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    Abstract  

  Controlled ovarian stimulation is a mainstay of assisted reproductive tech-
nologies and leads to optimal follicular growth and steroidogenesis in the 
majority of cases. Nonetheless, some women defi ned as “hyporesponders” 
require higher amount of exogenous gonadotrophin to achieve an adequate 
number of oocytes retrieved despite an apparently good prognosis. Clinical 
observational trials suggest that hyporesponse to exogenous gonadotro-
phins, including initial poor response, could be a genetically determined 
trait with specifi c genotype profi le associated with this condition. 
Specifi cally, mutation and polymorphisms involving luteinizing hormone 
(LH) and follicle-stimulating hormone (FSH) and their receptors LH-R 
and FSH-R have been thoroughly investigated. Among all the mutations 
discovered, it seems that that carriers of common LH variant and FSH 
receptor Ser/680 variants require higher doses of exogenous FSH to 
achieve a normal ovarian response. 

 In conclusion, the idea of a tailored gonadotrophin administration 
based on a pharmacogenomic approach may be considered in specifi c situ-
ations and could represent the future research target for a better under-
standing of the underlying mechanisms that regulate human fertility.  
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14.1         Introduction 

 Controlled ovarian stimulation (COS) is an 
essential step in most “in vitro” fertilization 
(IVF) programs. In this context, GnRH agonist 
(GnRH-a) long protocol in association with 
recombinant FSH (r-hFSH) still constitutes the 
most utilized strategy for normogonadotrophic 
patients. The use of GnRH antagonists (GnRH- 
ant) plus r-hFSH does represent a valid alterna-
tive. These approaches lead to optimal follicular 
growth and steroidogenesis in about 85–90 % of 
women. Conversely, COS results in a very differ-
ent clinical outcome, from poor ovarian response 
to the risk of hyperstimulation syndrome (OHSS) 
in a relevant number of cases. In addition, some 
women, defi ned as “hyporesponders,” require 
higher amounts of r-hFSH to obtain an adequate 
number (i.e., >4) of oocytes retrieved, despite an 
apparently good prognosis. 

 To sort this problem out, several markers have 
been proposed to predict ovarian response such 
as age, basal FSH, inhibin-B, anti-Müllerian hor-
mone (AMH), and the count of antral follicles by 
ultrasonography (AFC). Yet, there is an increas-
ing interest on the possible effect of specifi c gen-
otype patterns on ovarian response. 

 In the present chapter, the potential effect of 
specifi c mutations/polymorphisms of the gonad-
otrophins and their receptors on the outcome of 
COS is explored. Confi rmation of these observa-
tions would reinforce the idea of a tailored 
gonadotrophins administration based on a phar-
macogenomic approach.  

14.2     The Physiology 
of Gonadotrophins and Their 
Receptors 

 The classical “two cells-two gonadotrophins” 
model is based on the idea that follicle- stimulating 
hormone (FSH) and luteinizing hormone (LH) 
exert their roles on two different compartments, 
 granulosa  and  theca , respectively. According to 
this model, LH exerts its activity in  theca  cells, 
which express enzymatic pathways of androgen 
synthesis [ 1 ,  2 ].  Theca  involucres surround the 

 granulosa  cells, whose activities and prolifera-
tion are directly regulated by FSH. This hormone 
induces the expression of the aromatase enzyme, 
which in turn converts  theca -deriving androgens 
into estradiol (E 2 ). 

 This theory, reinforcing the notion that  granu-
losa  and  theca  cells are distinct compartments 
regulated by FSH and LH, respectively, has been 
revised. More specifi cally, it has been found that 
LH receptors are also detected on the  granulosa  
compartment at the intermediate follicular phase 
[ 2 – 5 ]. Therefore, it appears that LH regulates 
both  granulosa  and  theca  cells. 

 FSH and LH cooperate in inducing the  granu-
losa  cell-specifi c production of inhibin-B and 
other TGB-β growth factors. In addition, insulin 
growth factors (IGF) I and II, which are expressed 
by both  granulosa  and  theca  cells throughout fol-
liculogenesis, are important in promoting follicu-
lar maturation [ 6 ,  7 ]. Locally produced peptides, 
rather than estrogens, are known to be the key 
factor regulating primate follicle growth and 
development [ 8 – 11 ]. In light of these fi nding, we 
can conclude that (1) both gonadotrophins con-
tribute ( via granulosa ) to maintain the autocrine- 
paracrine system governing dominant follicle 
growth and (2) LH is crucial in sustaining FSH 
activity in the  granulosa  during intermediate-late 
stages of folliculogenesis. On this basis it is pos-
sible to argue that high levels of one gonadotro-
phin can counteract the lack of the other. This 
hypothesis is consistent with the observation that 
FSH activity can be totally substituted by LH 
once  granulosa  cells express adequate amounts 
of LH receptors [ 5 ,  12 ]. Conversely, higher exog-
enous FSH doses during COS are able to com-
pensate GnRH-a-related reduction of LH. It 
could be argued that if LH concentration and/or 
activity falls below a hypothetical threshold, an 
impairment in  granulosa  paracrine activities will 
occur, which in turn can lead to higher require-
ment of FSH. 

 On the basis of the above information, it could 
be hypothesized that during COS, different 
“adaptative” mechanisms may occur. For 
instance, lack of LH activity in  granulosa  cells 
may be counteracted by higher exogenous 
FSH. Conversely, administration of exogenous 
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LH may optimize FSH activity on the same com-
partment, which in turn can increase steroidosyn-
thesis and reduce FSH requirement. In the clinical 
practice, COS protocols are often chosen empiri-
cally. As consequence, same protocols are admin-
istered in most patients, despite potential 
biological differences. Adaptation capability of 
follicles leads ovarian response to an “adequate” 
profi le in almost all women. Nevertheless, this 
adaptation requires “integrity” of  granulosa - 
theca     system. Aging and some genetic character-
istics may reduce this capability, leading to 
“suboptimal” ovarian response. In the following 
paragraphs, the potential role of some polymor-
phisms of gonadotrophins and their receptors in 
conditioning ovarian response to gonadotrophins 
will be discussed.  

14.3     The LH System: A Crucial 
Variable During COS 

14.3.1     LH Polymorphism 

 Recently, it has been reported that hypore-
sponders who benefi ted from LH activity had 
endogenous levels of LH in the normal range. In 
addition, endogenous LH concentrations of these 
patients during early phases of COS was always 
comparable with those observed in women who 
had optimal response to FSH and who did not 
require any change of FSH dose during stimula-
tion. This observation led to the hypothesis that 

hyporesponse to r-hFSH is associated with a less 
bioactive LH [ 13 – 16 ]. 

 Among the most valuable β-LH polymor-
phisms identifi ed (Table  14.1 ) [ 17 – 24 ], we have 
recently performed an observational trial [ 25 ] 
aimed to evaluate whether the presence of the 
most common of them, v-LH, is associated with 
different profi les of ovarian response to r-hFSH.

   Pettersson and Söderholm [ 18 ] were the fi rst 
to describe this common variant of LH (v-LH) as 
an immunologically anomalous form of LH. The 
occurrence of the v-LH varies according to geo-
graphic areas (Fig.  14.1 ) [ 24 ]. v-LH is due to two 
point mutations in the β subunit gene, both alter-
ing the amino acid sequence (Trp 8 Arg and 
Ile 15 Thr). v-LH has elevated bioactivity in vitro 
but signifi cantly shorter (5–9 min) half-life in cir-
culation when compared with the wild type LH 
(wt-LH) (12–22 min). As the pulse frequency of 
the v-LH is normal, this results in an overall LH 
action that is more potent at the receptor site but 
shorter in duration in vivo.  

 The v-LH is common worldwide, with carrier 
frequency varying from 0 to 52 % in various eth-
nic groups. Its incidence in Italy ranges between 
12 and 13 %. The v-LH differs functionally from 
wt-LH, and it seems to predispose its carrier to 
mild aberrations of reproductive function men-
strual irregularities causing infertility [ 19 ] and 
recurrent pregnancy loss [ 26 ]. 

 In our observational trial, 60 normogonado-
trophic patients undergoing a GnRH-a long 
downregulation plus r-hFSH for IVF/ICSI, and in 

   Table 14.1    Mutations and polymorphisms of LH   

 Location  Type 
 Amino acid 
involved  Effect  Reference 

 Exon 3  Missense  Gln 54  to Arg  Absence of spontaneous 
puberty in male 

 Weiss et al. (1992) [ 17 ] 

 Exon 2  Missense  Trp 8  Arg 
 Ile 15  Thr 

 Delayed pubertal 
progression in male and 
infertility in female 

 Petterson et al. (1991) 
[ 18 ] 
 Furui et al. (1994) [ 19 ] 
 Haavisto et al. (1995) 
[ 20 ] 

 Exon 3  Missense  Ala  −3  Thr  Normal bioactivity  Jiang et al. (2002) [ 21 ] 

 Exon 3  Missense  Gly 102  Ser  Infertility in male, 
menstrual disorders in 
female 

 Liao et al. (1998) [ 22 ] 
 Ramanujam et al. 
(1999) [ 23 ] 

  Adapted from Lamminen and Huhtaniemi [ 24 ]  
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whom at least fi ve oocytes were retrieved, were 
divided into three groups: 22 women requiring a 
cumulative dose of r-hFSH >3,500 IU constituted 
group A, 15 patients requiring 2,000–3,500 IU 
were included in group B, and 23 women requir-
ing <2,000 IU served as control group (group C). 
The presence of the v-LH was evaluated using 
immunoassays able to detect both wt-LH and 
polymorphism. Group A showed a signifi cantly 
lower ( p  < 0.05) number of oocytes retrieved 
when compared with group B and C (7.3 ± 1.5, 
11.7 ± 2.4, and 14.7 ± 4.1 in the three groups, 
respectively). Seven carriers (32 %) of v-LH 
were found in group A, whereas only one variant 
(7 %) was observed in group B; no variant was 
detected in group C. This study suggested, for the 
fi rst time, an association between a less bioactive 
LH and a higher FSH requirement. In addition, it 
supports the idea that hyporesponders represent a 
specifi c subgroup of patients. In fact, all women 
requiring >3,500 IU of FSH had at least fi ve 
oocytes retrieved and showed peak estradiol 
>500 pg/ml, which in turn would have lead phy-
sicians to classify them as normal responders. 
Nevertheless, they had a statistically signifi cant 

reduction of the number of oocytes retrieved and 
estradiol levels when compared with woman 
requiring lower FSH doses. 

 On the basis of these fi nding we further inves-
tigated the relationship between v-LH and ovar-
ian response to FSH [ 27 ,  28 ] in a Danish 
population. v-LH was present in 11 % of patients, 
whereas the allelic frequency was 12 %. Patients 
were divided into two groups according to their 
LH genotype. Group A included 196 wt/wt 
women, and group B was constituted by 24 indi-
viduals with v-LH (21 heterozygous and 3 homo-
zygous). The mean number of oocytes retrieved, 
fertilization rate, and pregnancy rate per cycle 
were similar in the two groups. Group B received 
a signifi cantly higher cumulative dose of r-hFSH 
than group A (2,435.86 ± 932.8 IU versus 
1,959.8 ± 736.45;  P  = 0.048). LH genotype had a 
statistically signifi cant effect ( P  < 0.01) on the 
cumulative dose of r-hFSH, showing a progres-
sive increase from wt/wt (1,959.8 ± 736.45 IU) to 
v-LH heterozygotic (2,267.5 ± 824.3) and homo-
zygotic women (3,558.3 ± 970.9). These results 
confi rmed that carriers of v-LH have hyposensi-
tivity to exogenous FSH during COS.  
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  Fig. 14.1    Worldwide occurrence of the common v-LH (From Lamminen and Huhtaniemi [ 24 ])       
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14.3.2     LH Receptors (Mutations 
and Polymorphisms) 

 The luteinizing hormone/choriogonadotrophin 
receptor (LHCGR) is a member of the superfam-
ily of guanine nucleotide-binding protein- 
coupled receptors (GPCRs) and belongs to the 
glycoprotein hormone receptors [ 29 ]. LHCGR is 
expressed in Leydig cells and in ovarian  theca , 
 granulosa , as well as luteal cells. These receptors 
exert a fundamental role in reproductive process 
since puberty [ 30 ]. Several mutations have been 
identifi ed in LHCGRs, and some of them have 
been related to reproductive disorders such as 
male-limited gonadotrophin-dependent preco-
cious puberty, Leydig cell hypoplasia, and anovu-
lation/amenorrhea [ 30 ]. In addition, some authors 
have observed an increased risk for endometrioid 
adenocarcinoma when rs13405728 mutation in 
gene LHCGR is associated with SNPs 
rs2479106 in gene DENND1A [ 31 ]. 

 LHCGR mutation can be didactically divided 
into two categories:

    1.    Activatin g  mutations (such as missense 
Leu368Pro, missense Asp578His), which 
were associated with precocious puberty and 
Leydig cell neoplasia   

   2.    Inactivating mutations, characterized by pseu-
dohermaphroditism and in some cases (such 
as deletion of exon 10) by normal sexual 
development with no sign of puberty [ 32 ]     

 In addition to the LHCGR mutations, more 
than 200 single nucleotide polymorphisms have 
been discovered. One of the most widespread 
polymorphisms is due to the presence of a two- 
amino acid insertion at position 18 in exon 1 
(insLQ) and has been detected in breast cancer 
patient with lower survival rate [ 33 ]. 
Subsequently, another group have analyzed the 
same polymorphism in PCOS patients, but found 
no signifi cant association [ 34 ]. 

 A detailed phenotype of novel homozygous 
inactivating nonsense and missense mutations of 
the LH-receptor gene (Arg 554 stop codon 554 
[TGA] and Ser 616 → Tyr 616, respectively) has 

been described in a woman with compromised 
ovulation and luteinization processes but appar-
ent normal pubertal feminization [ 35 ]. This 
aforementioned patient presented with high LH 
and FSH levels and normal estradiol end proges-
terone values [ 36 ]. 

 Evidence about the relationship between 
LHCGR and reproductive outcome during COS is 
scarce. In addition to the previously mentioned 
Kerkala et al.’s observations [ 34 ], some authors 
have recently observed that a higher expression of 
LH receptors by human cumulus granulosa cells 
is associated with lower fertilization rate [ 37 ].   

14.4     The FSH System: 
From Physiology to COS 

14.4.1     FSH Receptor (Mutations 
and Polymorphisms) 

 The FSH receptor (FSH-R), likewise its homo-
logue LH, is a glycoprotein hormone receptor 
that belongs to subfamily of G protein-coupled 
receptors (GPCRs). FSH mutations have been 
extensively studied with more than 1,000 poly-
morphic variants identifi ed to date [ 38 ]. Like 
LHCGR, FSH-R mutations are categorized in 
“activating” or “inactivating” mutations. 

 The fi rst “activating” FSH-R mutation was 
discovered in a hypophysectomized man who 
surprisingly showed normal spermatogenesis 
despite undetectable FSH levels [ 39 ]. 

 Other two peculiar cases of constitutively acti-
vated FSH-R were characterized by heterozy-
gous Thr449Ile and Asp567Asn mutations. Both 
affected women had a history of spontaneous 
OHSS syndrome during pregnancy. The probable 
explanation for this phenotype is linked to the 
altered ligand site, which becomes activated in 
the presence of high hCG levels as normally seen 
during pregnancy [ 40 ,  41 ]. 

 Carriers of “inactivating” mutations are usu-
ally affected by hypergonadotrophic hypogonad-
ism, primary or early-onset secondary 
amenorrhea, variable sexual development, arrest 
of follicular maturation between primordial and 
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preantral stage, and poor semen quality. While 
severe phenotypes have been described in carri-
ers of Ala189Val and Pro348Arg mutations, mild 
forms have been detected in patients with a com-
pound heterozygous mutation of Ala189Val and 
Ala419Thr [ 42 – 44 ]. 

 The most investigated variant of the FSH-R 
consists in the replacement at position 680 of the 
amino acid asparagine by serine (Fig.  14.2 ) [ 32 ]. 
This polymorphism has been associated with 
higher basal FSH levels and an increased number 
of antral follicles during the early follicular phase 
[ 45 ]. In an observational trial, Perez Mayorga 
et al. [ 46 ] evaluated the relationship between the 
presence of the Ser/680 FSH-R variant and ovar-
ian response to COS in 161 normo-ovulatory 
women undergoing IVF. All women were below 
40 years. The distribution of genotypes in the 

study population was 29 % for the Asn/Asn, 
45 % for the Asn/Ser, and 26 % for the Ser/Ser 
FSH-R variant. Both estradiol levels at the day of 
human chorionic gonadotrophin (hCG) and num-
ber of retrieved oocytes were similar in the three 
groups. Conversely, basal FSH levels were sig-
nifi cantly different among the three groups 
(6.4 ± 0.4 IU/l, 7.9 ± 0.3 IU/l, and 8.3 ± 0.6 IU/l 
for the Asn/Asn, Asn/Ser, and Ser/Ser groups, 
respectively,  P  < 0.05). In addition, the mean 
number of FSH ampoules required for successful 
stimulation was signifi cantly different among 
groups (31.8 ± 2.4, 40.7 ± 2.3, and 46.8 ± 5.0 for 
the Asn/Asn, Asn/Ser, and Ser/Ser groups, 
respectively,  P  < 0.05). These clinical fi ndings 
demonstrated that ovarian response to FSH stim-
ulation depends on the FSH-R genotype. 
Following these observations, Behre et al. [ 47 ] 
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  Fig. 14.2    Human FSH 
receptor mutations. The 
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disequilibrium with 
Thr307Ala ( green ) 
(From Huhtaniemi and 
Themmen [ 32 ])       
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tested whether the same daily dose of FSH 
resulted in lower levels of estradiol in women 
homozygous for the Ser/Ser and whether the dif-
ference could be overcome by higher FSH doses. 
Fifty-nine women undergoing COS for IVF or 
ICSI and homozygous for the FSH-R polymor-
phism Ser/680 were randomly allocated in three 
groups. Group I (Ser/Ser,  n  = 24) received a daily 
FSH dose of 150 IU/day, and group II (Ser/Ser, 
 n  = 25) received a FSH dose of 225 IU/day. In 
group III (Asn/Asn,  n  = 44), FSH dose was 
150 IU/day. Age and basal FSH levels were not 
different between groups. Total FSH doses were 
comparable in group I (1,631 ± 96 IU) and group 
III (1,640 ± 57 IU) but signifi cantly higher in 
group II (2,421 ± 112 IU) ( P  < 0.001). Peak estra-
diol levels were signifi cantly lower in group I 
(5,680 ± 675 pmol/l) compared to group III 
(8,679 ± 804 pmol/l) ( P  < 0.05). Increasing the 
FSH dose from 150 to 225 IU/day overcame the 
lower estradiol response in women with Ser/Ser 
(group II, 7,804 ± 983 pmol/l). The authors con-
cluded that patients with the Ser/Ser FSH-R vari-
ant have lower FSH receptor sensitivity, which 
can be overcome by higher FSH doses. This 
study represented the fi rst case of a pharmacoge-
nomic approach to COS.  

 Recently, we have evaluated the occurrence of 
the Ser/680 FSH-R variant among women classi-
fi ed as “hyporesponders” (Alviggi et al. 2013). 
Forty-two normogonadotrophic patients in whom 
at least fi ve oocytes were retrieved after GnRH-a 
long downregulation protocol followed by stimu-
lation with r-hFSH for IVF/ICSI were retrospec-
tively studied. On the basis of the total r-hFSH 
consumption, patients were divided into two 
groups: 17 women requiring a cumulative dose of 
r-hFSH >2,500 IU constituted group A, whereas 
25 patients requiring <2,500 IU served as controls 
(group B). DNA was analyzed to determine the 
FSH receptor genotype. Estradiol peak levels were 
signifi cantly lower in group A (997 ± 385 pg/ml) 
when compared with group B (1,749 ± 644; 
 P  < 0.001). The number of oocytes retrieved was 
also signifi cantly lower in group A compared with 
group B (7.1 ± 1.5 versus 9.6 ± 2.4;  P  < 0.001). 
Homozygous Ser/Ser receptor variant at codon 
680 was observed in 47.0 % of women of group A 

and in 28.0 % of women of the control group. The 
homozygous Asn/Asn receptor variant was found 
in 23.6 and 20.0 % of patients in the two groups, 
respectively. Heterozygosis Ser/Asn was detected 
in 29.4 % of patients of group A and in 52.0 % of 
patients of group B. These results indicated that 
FSH-R Ser 680/variant is more frequent in women 
with hyporesponse to r-hFSH. 

 Although some investigators found a positive 
association between pregnancy rate and presence 
of Ser680 genotype [ 48 ,  49 ], a recent meta- analysis 
confi rmed that Ser/Ser genotype carriers have sig-
nifi cantly higher basal FSH levels and require 
higher exogenous FSH doses for COS [ 50 ]. 

 Nakayama et al .  in 2006 identifi ed another 
polymorphic variant of FSH-R with possible 
implication in COS [ 51 ]. It consisted of a poly-
morphism in the 5′-UTR of the FSH-R gene 
(position 29 A/G; rs1394205), which seems to be 
associated with a lower luciferase activity com-
pared with G/G 29 allele. Subsequently, Desai 
and colleagues observed a reduced FSH-R 
expression in  granulosa  cells of AA genotype 
carriers [ 52 ]. 

 In women undergoing assisted reproduction, 
variants A/A have been associated with poor 
ovarian response with respect to number of 
oocyte retrieved and doses of exogenous FSH for 
COS [ 53 ]. 

 Lastly, the impact of a new FSH-R polymor-
phism has been investigated in a female Indian 
population. Specifi cally, 50 patients undergoing 
ART and 100 fertile patients have been recruited. 
The authors observed that Ala307Ala carriers 
required lower amount of exogenous FSH for ovu-
lation induction in comparison with Thr307Thr 
and Thr307Ala subjects. Estradiol levels and inci-
dence of OHSS were higher in the former [ 54 ]. 

 FSH-R polymorphisms and the ovarian out-
come in women undergoing ovarian stimulation 
have been widely studied [ 46 ,  52 – 58 ].  

14.4.2     FSH Mutations 
and Polymorphisms 

 Several β subunit mutations of FSH have been 
identifi ed in the literature. Most of them  inactivate 
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the FSH effects. In females, primary amenorrhea, 
impaired fertility, and compromised pubertal 
development are the most frequent clinical mani-
festations. In contrast, FSH mutations in males 
do not affect sexual maturation although they 
result in azoospermia. Most of FSH mutations 
interfere with a specifi c cysteine knot region that 
is crucial for dimerization with α subunit and bio-
logical activity [ 32 ]. 

 Unlike LH β, most of FSH polymorphic vari-
ants have been found in noncoding regions con-
fi rming that FSH β is strongly conserved in the 
human species [ 32 ,  59 ]. 

 To date, only a single nucleotide polymor-
phism located into FSH β promoter-211G/T 
seemed to infl uence the FSH concentration in 
males [ 60 ,  61 ]. In addition, it seems that Ser 680 
Asn polymorphism may infl uence serum FSH 
levels in the male population [ 62 ]. The same 
effects were also reported in the female popula-
tion. Higher FSH serum levels were observed in 
women with the FSHB-211 GT + TT/associated 
with FSHR2039 AA genotype [ 59 ]. The impact 
of FSH polymorphisms and their combination 
with different FSH-R genotypes is yet to be 
evaluated.   

    Conclusion 

 The unraveling of the mechanisms that regu-
late the interaction between the gonadotro-
phins and their receptors is a step forward to a 
better understanding of why an impaired ovar-
ian response to stimulation occurs in apparent 
good prognosis patients. There are clinical 
observational trials suggesting that hypore-
sponse to exogenous gonadotrophins, includ-
ing initial poor response, could be a genetically 
determined trait. This phenomenon has been 
associated with the presence of at least two 
common polymorphisms involving LH and 
FSH-R, respectively. Carriers of v-LH and 
FSH-R Ser/680 variants, despite normal levels 
of endogenous gonadotrophins and regular 
AMH/AFC, require higher doses of exoge-
nous FSH to achieve a normal ovarian 
response. Thus, the idea of a tailored gonado-
trophin administration based on a pharma-
cogenomic approach may be considered in 

specifi c situations. As examples, LH supple-
mentation may be considered in the presence 
of v-LH, whereas a timely identifi cation of 
Ser/680 FSH-R variant may represent an indi-
cation to administer higher doses of FSH.     
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